$g$-natural metrics of constant curvature on unit tangent sphere bundles
نویسندگان
چکیده
منابع مشابه
Para-Kahler tangent bundles of constant para-holomorphic sectional curvature
We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...
متن کاملLocal Symmetry of Unit Tangent Sphere Bundle With g- Natural Almost Contact B-Metric Structure
We consider the unit tangent sphere bundle of Riemannian manifold ( M, g ) with g-natural metric G̃ and we equip it to an almost contact B-metric structure. Considering this structure, we show that there is a direct correlation between the Riemannian curvature tensor of ( M, g ) and local symmetry property of G̃. More precisely, we prove that the flatness of metric g is necessary and sufficien...
متن کاملNew structures on the tangent bundles and tangent sphere bundles
In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes Sasaki metric and Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. This is the natural generalization of the well known almost Kählerian structure on T (M). W...
متن کاملEinstein Metrics on Tangent Bundles of Spheres
We give an elementary treatment of the existence of complete Kähler-Einstein metrics with nonpositive Einstein constant and underlying manifold diffeomorphic to the tangent bundle of the (n + 1)-sphere. Mathematics Subject Classification (2000) 53C
متن کاملRemarks on η-Einstein unit tangent bundles
We study the geometric properties of the base manifold for the unit tangent bundle satisfying the η-Einstein condition with the standard contact metric structure. One of the main theorems is that the unit tangent bundle of 4-dimensional Einstein manifold, equipped with the canonical contact metric structure, is ηEinstein manifold if and only if base manifold is the space of constant sectional c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archivum Mathematicum
سال: 2012
ISSN: 0044-8753,1212-5059
DOI: 10.5817/am2012-2-81